Communication Systems

Instructor

Dr. Wasel Ghanem



Model of a Communication System

Communication 1s defined as “exchange of information™.

Telecommunication refers to communication over a distance greater than would
normally be possible without artificial aids.
Telephony is an example of point-to-point communication and normally involves a two —

way flow of information.

Broadcast radio and television : Information is transmitted from one location but is
received at many locations using different receivers (point to multi-point communication)

Model of a communication system :
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The purpose of a communication system is to transmit information — bearing signals from
a source located at one point to a user located at another end.

The input transducer 1s used to convert the physical message generated by the source into
a time-varying electrical signal called the message signal.

The original message 1s recreated at the destination using an output transducer.

The transmutter modifies the message signal into a form suitable for transmission over
the channel. Here modulation takes place.

The channel is the medium over which signal is transmitted, (like free space, an optical
fiber, transmission lines, twisted pair of wires...). Here signal is distorted due to

A. Nonlinearities and/or imperfections in the frequency response of the channel.
B. Noise and interference are added to the signal during the course of transmission.

The purpose of the receiver is to recreate the original signal x(t) from the degraded
version v (t) + n(t) of the transmitted signal after propagating through channel .
Here, demodulation takes place.



Classification of Signals

Definition: A signal may be defined as a single valued function of time that conveys
information.

Depending on the feature of interest, we may distinguish four different classes of signals:

1. Periodic Signals, Non-periodic Signals:

A periodic signal g(t) is a function of time that satisfies the condition g(t) = g(t+Ty), ¥ t.
The smallest value of Ty that satisfies this condition is called the period of g(t).
Example: A Periodic Signal
The saw-tooth function shown below is an example of a periodic signal.

0

1] T, T,

Fig. 1.1: A periodic signal with period T




Example: A Non-periodic Signal
The signal

A 0=trt<rTt
g(t) = [I], otherwise

is non-periodic, since there does not exist a Ty for which the condition g(t) = g(t+T,) is satisfied.

2. Determinstic Signals. Random Signals:

A deterministic signal is one about which there is no uncertainty with respect to its value at any
time. It is a completely specified function of time .

Example: A Deterministic Signal

x(t) = Ae~u(t) ; A and a are constants.




A random signal is one about which there is some degree of uncertainty before it actually occurs.
(It involves a random variable )

Example : A Random Signal

x(t) = A e"™u(t) ; a is a constant and A is a random variable with the following probability
density function (pdf).

_f1 0=a=1
Fala)y= [{I otherwise

3. Energy Signals, Power Signals:

The instantaneous power in a signal g(t) is defined as that power dissipated in a 1-Q resistor, i.e.,

P(1)=g(®).
The average power is defined as:

. 1 T rl

Pav £ limy_,.. FI—T lg(t)|” dt
The total energy of a signal g(t) is

E £ lim PG
A signal g(t) is classified as energy signal if it has a finite energy, 1.e, 0 <E < oo
A signal g(t) is classified as power signal if it has a finite power, i.e, 0 < Py, <0
The average power in a periodic signal is

Pav = = [ |g(6)|* dt ; To s the period .

Usually, periodic signals and random signals are power signals. Both deterministic and non
periodic signals are energy signals.




4. Analog Signals, Digital Signals :

An analog signal is a continuous time - continuous amplitude function of time .

Example:

The sinusoidal signal x(t) = Acos 2mft , —o0 < t < ©o, is an example of an analog signal.

A discrete time- discrete amplitude (digital) signal is defined only at discrete times. Here, the
independent variable takes on only discrete values.



Example:

The sequence x[n] shown below is an examples of a digital signal. The amplitudes are drawn
from the finite set {1,0,2}. x[n]
&

2.0
L0 10 1
- >
-1 0 1 2 3 t
More Examples
Example: An Exponential Pulse
Find the energy in the signal g(t)= A e™*" u(t).
w g Fack @ —'\E'_Mt A% . - . . .
E= fn A° e™ " dt=A ol == . Since E is finite, then g(t) is an energy signal.
20
Example: A rectangular Pulse
Find the energy in the signal:
A, 0<t<rt
g(t) = [[l', o.w
E= _rut A? dt = A*t. This signal is an energy since E is finite.




Example: A Periodic Sinusoidal Signal
Find the average power in the signal :
git)y=Acoswt ,—oo <t < oo

Since g(t) 1s pertodic, then :

1 Ty .2 3 _A* Ty 1+4cos 2wt
PEFEIH A® cos Mtdt—T—ujﬂ (T}

P, is finite and so g(t) is a power signal.

Example: A Periodic Saw-tooth Signal

Find the average power in the saw-tooth signal g(t) plotted in Fig.1.

g{t}=%t 0<t <T,
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Example: The Unit Step Function
Consider the signal: g(t) = A ul(t).
gt
4
A

=T 0 T
Fig. 1.2

This is a non periodic signal. So let us first try to find its energy:
E= I:AZ dt=co.
Therefore, g(t) is not an energy signal (E is not finite).

To find the average power, we employ the definition :
Pav £ limy_o —J_, |g(8)? dt ,

where 2T is chosen to be a symmetrical interval about the origin, as in Fig. 1.2 above.

1 T ArT  aAf
— 1 — 1 — ¥ — —
P‘av.r—hm-_r_,mz _I;] Acdt =limp_,. ==

So, even-though g(t) is non a periodic, it turns out that it is a power signal.

This is an example where the general rule (periodic signals are power signals and energy signals

are non periodic signals) fails to hold.



Fourier Series
Let g(t) be a periodic signal with period Ty = -%- The signal g(t) may be expanded in one of three
0
possible Fourier series forms:
The complex form:

9(0) = X, Coelnoet

where, Co= Tifong(t) e~/nwot gt -

0

C, : 1s a complex valued quantity that can be written as:
Ca=|Ca|e/®"

Discrete Amplitude Spectrunr. A plot of |Cu| vs. frequency

Discrete Phase Spectrun A plot of 8,, vs. frequency

The term at wy, is referred to as the fundamental frequency. The term at 2w, s referred to as the
second harmonic, ...



The trigonometric form:

g(t) =ay + Z(a,. cos nwyt + b, sin nwgt)

n=1

Where : a,= rl 01'0 g(t)dt (dc or average value)
0
2 T
n = J,° g(t) cosnw,t dt

b, = 'rio foT° g(t) sinnwgyt dt

The polar form :

g(t) =co+ Z 2|C,| cos(nwyt + 6,)

n=1
where C, and 6,, are those terms defined in the complex form.

Remark: The above three forms are equivalent and are representations of the same waveform. If
you know one representation, you can easily deduce the other.




Example: Find the trigonometric Fourier series of the periodic rectangular signal defined over

one period Ty as:
_(+A, =Tp/a <t =Ty /4
g(t) = I 0, otherwise

Solution:
_ 1 (Tof2 _ 1 Tof4 =
ap= E-r—ﬁ-fzg[t] dt —17“ J-—TmHA dt=A/2

_ 2 /2 . _2 To/4 . T _

b, = = -T.,fzg[t] slnlfltdt =T I_Tm,*.-'-l sin( ™ Ve dt=0

2 Mo/t Acus{zﬂ}t dt
To

2 T2 a
a, = E-r-?‘nﬁg{ﬂ ms(%"]t dt = E-r-‘i'nﬂ

= n=159,..
nmI

an = % n=3711,..
0, n=2,406..

The first four terms in the expansion of g(t) are:

git) = g + %{Eﬂﬁ[ﬂﬂfn] t— %cns[inE}’n} t+ écns(Eﬂan} t}

The function §(t) along with g(t) are plotted in the figure for=1 <t <1



assuming A=1land f=1
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Remark: As more terms are added to §(t), §(t) becomes closer to g(t) and in the limit as n = oo,
g(t) becomes equal to g(t) at all points except at the points of discontinuity.

Parseval’s Power Theorem

The average power of a periodic signal g(t) is given by:

Pav = %f:ﬂly(t}lz dt = E:__m|cn|2 =|c,|2 +EE:-1|EH|2

1 oo
= lagl® + = 3 oy (lan I* + | bal?)
Power Spectral Density

A plot of |Cy|* vs. frequency is called the power spectral density (PSD). It portrays the power
content of each frequency (spectral) component of a signal. For a periodic signal, the PSD
consists of discrete values at multiples of the fundamental frequency.

Exercise: Consider again the saw-tooth function defined over one periodas g(t) =t,0<t <1

a. Use matlab to find the dc terms and the first three harmonics (i.e., let n = 3) in the Fourier
series expansion

3
glt) =ay + Z (a, cosnwgt + b, sin newgt)
n=1

b. Plot g(t) and g(t) versus time for =1 < ¢t < 1 on the same graph.
c. Find the fraction of the power contained in §(t) to that in g(t).
d. Sketch the power spectral density.




Example : Find the power spectral density of the periodic function g(t) shown in the figure :
L
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Solution: Here we need to find the complex Fourier series expansion, where the period Ty = 21

g(t} = E:._m Cn elnwot

1

T -
Cn=Tafﬂ°g(t]e nwaet gy
A
-, n=>0
2 (4 2 -
34 _ E} f n=0
C=f mw  MEELEE o e,
34 (lm_] , Mo
—_, n==+3+7 %11, .. .
Injm 0, n: even
0, n=+2, +4,..
Sg(f) = T roalCal? 8(F — nfy)

&2 2
A6y (2)?

34,3
1 | e

-5fy -4fy -3y 2fa Ry 0 fo 21y 3y 4y 51y

As can be seen, the power spectral density of this periodic signal is a discrete function in
frequency.

Exercise: Verify Parseval’s power theorem for this signal, i.e., show that

Py = %j;'ﬂ,g(r) Pdt=3" _|C.l2=2.54%




Fourier Transform

Let g(t) be a non periodic square integrable function of time. That is one for which
12 190 dt < oo

The Fourier transform of g(t) exists and is defined as:
G(F) = [, g(O)e 7t dt

The time function g(t) can be recovered from G(f) using the inverse Fourier Transform:
9(0) = [, G(Perrt af

Remarks:

e All energy signals for which E = [___|g(t)|* dt < co are Fourier transformable.

o (5(f) 1s a complex function of frequency f, which can be expressed as:
G(H)=|G(f)| e”P)

where, | G(f) | : is the continuous amplitude spectrum of g(t), (even function of f).

B(f) : is the continuous phase spectrum of g(t), (odd function of f).




Rayleigh Energy Theorem :

The energy in a signal g(t) is given by :
E=[__ 19O dt=[__1G(I*df

The function |G(f)|? is called the energy spectral density. It illustrates the range of frequencies
over which the signal energy extends and the frequency bands which are significant in terms of
their energy contents. For a non-period signal energy signal, the energy spectral density is a
continuous function of f.

A General Form of the Rayleigh Energy Theorem

For two energy functions g(t) and v(t), the following result holds:

12, g(®v() de= [ G(HV(f) df




Example: Energy spectral density of the exponential signal

=hit
U(t} = [ﬁl e t=0

0 t=<0
V(f) = J' v(t)e=/2mft dt =J. Ae~bt g-ilmfty
0 0

= ) —(b+j2Rf)t a
= =(b+j2mf)t = AE ™=
Vi =4k, e A=A Griaan 0 ~brjzar

A A
= = =
v b+j2nf v (b%+(2mf )2
The energy spectral density is: S,(f) = |V()|? = b;fmz

Remark: The signal v(t) is called a baseband signal since the signal occupies the low frequency
part of the spectrum. That is, the energy in the signal is found around the zero frequency. When
the signal is multiplied by a high frequency carrier, the spectrum becomes centered around the
carrier and the modulated signal 15 called a bandpass signal.

Exercise : For the exponential pulse verify Rayleigh energy theorem, i.e., show that

[T w®de = 2 [T V(DR =2




Example: The Rectangular Pulse g(t) = Arect(%]

G(f) = 117, Aeminftdr = =sinmfT a(t)
sinmfT

nfT

2 AT sinc Tf A

= AT

|G(f)| = AT |sinc Tf]

=~
L J

lim,_ % =1 =’max. of function -

[EN ]
-

G(f) = 0whensinnfT =0 orwhen nfT =nm , =11, £2, +£3,...

fT=n _.-,f:%

ST 2T AT YTt 2/T 3/%

Remark: Time duration and bandwidth :

Note that as the signal time duration T increases, the first zero crossing at f = ::decreases,
implying that B.W of signal decreases. More on this will be said later when we discuss the time
bandwidth product.




Properties of the Fourier Transform:

1.

Linearity (superposition)
Let g4(t) « Gy(f) and g,(t) < Go(f) , then :
c1g1(t)+ c2g2(t) = ¢1G1(f )+ c2G2(f) ; €4, ¢z are constants
Time scaling
glat) « ﬁ G(f/a)
Duality
If g(t) < G(f),then: G(t) < g(—f)
Time shifting
If g(t) &= G(f),then g(t—ty) G(f}e'-ﬂ"”ﬂ
Delay in time > phase shift in frequency domain

Frequency shifting: If g(t) < G(f) , then:




5. Fregquency shifting: If g(t) < G(f) , then:

g(t) e/?™*t & G(f — fc) ; f. is a real constant

. G(f) G(f-f.)
e j2mf.t
Q A = A
-+ - -4 1
2(t) -w 0 w f f.

6. Area under G(f) : If g(t) = G(f) . then:

g(0) = [ G(HHdf

The value g(t = 0) is equal to the area under its Fourier transform.




7. Areaunder g(t): If g(t) < G(f) , then:

G(0) = [ g(t)dt
The area under a function g(t) is equal to the value of its Fourier transform G(t) at f=10.
Where G(0) implies the presence of a dc component.
8. Differentiation in the time domain
If g(t) and its derivative g'(t) are Fourier transformable, then :
g'(t) & (2xf)G(f)
i.e., differentiation in the time domain —> multiplication by j2xf in the frequency domain.

( enhances high frequency components of a signal while attenuates low frequency
components)

Also, 22O o (i2af)" G(f)

den

9. Integration in the time domain
J"fmg(‘r}dt = ﬁ G(f) ; assuming G(0) = 0.

L.e., integration in the time domain = division by (j2rf) in the frequency domain.
( enhancement of low frequency components of the signal ).

When G(0) # 0, the above result becomes :




[ 9@dr = ——G()+3; 6OS().
10. Conjugate Functions
For a complex — valued time signal g(t), we have:
gt) e G(=f) :

Also, g'(—=t) = G (f)
Therefore, Re{g(t)} © = {G(f) +G'(—f)}

Im{g)} < = (6()-G"(-)
11. Multiplication in the time domain

9:(0) 02(t) = [2,6:() G(f — 2) dA=Gy(f) * G2(f)

Multiplication of two signals in the time domain is transformed into the convolution of their
Fourier transforms in the frequency domain.

12. Convolution in the time domain

gi(t) = ga2(t) < Gy(f)G2(f)

Convolution of two signals in the time domain is transformed into the multiplication of their
Fourier transforms in the frequency domain.




Fourier Transform of Power Signals

For a non-periodic (energy) signal, the Fourier transform exists when
E=]"lgt)dt<om

Sothat G(f) = [__ g(t)e ™ tdt .

For power signals, the integral [__ g(t)e~/?"/dt does not exist.

However, one can still find the Fourier transform of power signals by employing the delta
function. This function is defined next.

Dirac — Delta Function (impulse function)

This function is defined as

so= {3 20 &) 2(0)
a(t)
Such that [_&(t)dt =1 < - 0 t

and  [° g(0)8(t)dt = g(0)

(Here, g(t) is a continuous function of time).




Some properties of the delta function:

NS R W N

g(t)s(t — tg) = g(ty)d(t — ty) ; (Multiplication)
2 g(6)8(t — to)dt = g(ty) : (Shifting)
§(at) = ﬁﬁ{t}

§(t) = g(t) = g(t)

5(t) = =2 = u() = [ 8(t)dt
5(t) = 6(—t)
Fourier transform : F{8(t)} =1
La(t) Fis(t)}
+ 1
< = S >

t
B.F{8(t —ty)} = e~/2fto




Applications of delta functions

1. Dc signal : Since F{&(t)} = 1, then by the duality property F{1}=4(f)}

A gt) AS(H4

- > -
0 t 0

2. Complex exponential function




FiA el2®fety = A §(f — f.)

3. Sinusoidal functions
Ficos2nf.t} = = {8(f — £) + 6(f + £)}
F{sin2nf.t} = % (8(f = £)=8(f +£.)}

4. Signum function

1 t=0
sgn(t)= 40 t=0
-1 t=<0

Fisgn(t);

1
jr

'-.h_




5.Unit Step function :

1 t>0

u{t}={§ t=0 ut)y 1
0 t<0

sgn(t) = 2u(t) — 1 - 1] 1

u(t) =={sgn(t) + 1}

1 1
Flu(} ===+ 3 5()
6.Periodic Signals

A periodic signal g(t) is expanded in the complex form as :
g(e)= X" C,elnwet
Flg(®)} = X, Cc8(f—nfy)
When g(t) = 3" 8(t—mT,) ; impulse train in time domain

1 Tyf2 i 1
Co=gln 9@ et de = o=ty




= Fle®) =5 X 8(f—nfo)

g(t) G(f)

I AL

>
-To 0 T 2Ty t o 0 £y 26 f

L

MNote that the signal is periodic in the time domain and its Fourier transform is periodic in the
frequency domain. This sequence will be found useful when the sampling theorem is considered.



Transmission of Signals Through Linear Systems

Definition : A system refers to any physical device that produces an output signal in
response to an input signal.

inpul_____| system output
“excitation” | hit),HI(f) | "response”

Definition _: A system is linear if the principle of superposition applies.

If X (t) produces output vi(t)

Xalt) produces output yalt)
then ap(t)+ axxa(t) produces an output a1yt azya(t)
Also, azero input should produce a Zero output.

Example of linear systems include filters and communication channels .

Definition : A filter refers to a frequency selective device that is used to limit the
spectrum of a signal to some band of frequencies.

Definition : A channel refers to a transmission medium that connects the transmitter
and receivers of a communication system .

Time domain and frequency domain may be used to evaluate system performance.




Time response :

Inpu outpLt
Definition : The impulse response h(t) is defined as the Ep{ t system Jﬁ{;

response of a system to an impulse &(t) applied to the
input at t=0 .

h(t)
Definition : A system is time-invariant when the shape of

the impulse response is the same no matter when the
impulse is applied to the system .

&(t) — hit), then &(t—tz3— hit-ty)

When the input to a linear time-invariant system in a signal
x(t) , then the output is given by

y(®)=y(t) = |7 x()h(t— ) di /\ .

= f_mmh[l}x[t— 2) di : convolution integral ("




Definition _: A system is said to be causal if it doesn't respond before the excitation
is applied , i.e. ,

h(t) =0 t<0
The causal system is physically realizable.

Definition : A system is said to be stable if the output signal is bounded for all
bounded input signals .

If |x(t)|= M; M is the maximum value of the input
then |y(®)] < [ |h() ||Ix(t—1) | de
=M _[ll h(t) | dt
— A necessary and sufficient condition for stability (a bounded output) is
2 Ih@]dt < = ; h(t) is absolutely integrable.

zero initial conditions assumed .




Frequency Response :

Definition : The transfer function of a linear time invariant system is defined as the
Fourier transform of the impulse response .

H(f) = Fih(t)}

Since y(t) =x(t)*h(t) . then
Y(f) = H(f) X(f)

Y{f)
— H
or X (f)

The transfer function H(f) is a complex function of frequency, which can be obtained
as the ratio of the Fourier transform of the output to that of the input.

H(f) = |[H(f)|e! *"
where

H(f) : amplitude spectrum

8(f) : phase spectrum.




System Input—Output Energy Spectral Density
Let x(t) be applied to a LTI system , then the Fourier transform of the output is related
to the Fourier transform of the input through the relation

Y(f) = H(f) X(f)

Taking the absolute value and squaring both sides, we get
IY(DI’= [HDF | XD
Sv(f) = [H(DI Sx(f)

Sv(f): Qutput Energy Spectral Density
Sx(): Input Energy Spectral Density.

Output energy spectral density = H(O x Input energy spectral density

The total output energy

E, = f:: Sy(f)df
= [T |H(DI2 Sk (f)df.

The total input energy is

E. =7 5.(fdf .



Example: Response of a Filter to a Sinusoidal Input

The signal x(t) = cos wyt is applied to a filter described by the transfer function

H(f) = H}; —. Find the filter output y(t).

Solution:
We will find the output using the frequency domain approach.
Y(f) = H(f)X(f)

H(f) = . e—i8- f =tan~l=: 8y = tan=12

!1.'.{1_' 2 B

Y(f) = HPOES(f — fo) +38(f + fo)]

Y(f) = sH(f)8(f = fo) +3H(=fo)8(f + fo)

11 - 11 :
v = 2 ||1+li’rt?“]2 ) "E“ﬁ(f o)+ 2 f1+lilr?n]z E;Euﬁtf o)




Taking the inverse Fourier transform, we get

1 1
£ = L(pi(2nfot=80) 4 p=i(2fot=80)

y(t) = cos(2mfyt — 6y)

1+

Note that in the last step we have made use of the Fourier transform pair

ef2%et & 8(f ~ f,)
Assume, for instance, that f; = B. Then 8, = tan™" ‘FF“ = tan™' 1 = 45° and the
output can be written as:

y(t) = 1'l,%1:[:15[2'.!?}".ﬂ,t — 45°)

y(t) = %cns(lﬂ £t — 45°)




Exercise: The signal x(t) = cos wyt — ir:ﬂs 3wyt is applied to a filter described by

the transfer function H(f) = — _;} 5 Use the result of the previous example to find
the filter output v(t).

Exercise: Consider the periodic rectangular signal g(t) defined over one period T} as:

_[+A, =Tp/a=t=Ty/4

g(0) = I 0, otherwise
If g(t) is applied to a filter described by the transfer function H(f) = 1_”;, 5 Use
the result of the previous example to find the filter output y(t).
Example:
The signal g(t) = Arﬂﬂt(ﬂi,) is applied to the filter (f) = 1+;r TR Find the output
energy spectral density.
Solution:

Sy(f) = |[H(F)I*Sx(f)

1 .
Sy(f) = mt.; |AT |sinc Tf||*




Example:

The signal g(t) = &(t) — 6(t — 1) is applied to a channel described by the transfer

function H(f) = 1+jlﬁﬁr . Find the channel output.

Solution:

The impulse response of the channel is obtained by taking the inverse Fourier
transform of H(f), which is

hit) = 2mBe™2™Bty(t)
Using the linearity and time invariance property, the output can be obtained as:
y(t) = h(t)u(t) — h(t — Du(t — 1)
y(t) = 2nB[e~2"Bty(t) — e~ 2 BU-Uy (¢ — 1)]
Exercise: The signal g(t) = u(t) — u(t — 1) is applied to a channel described by the

transfer function H(f) = — jj} TR Find the channel output y(t).




Signal Distortion 1in Transmission

As we have said before, the objective of a communication system 1s to deliver to the
receiver an almost exact copy of what the source sends. However, communication
channels are not perfect in the sense that impairments on the channel will cause the
received signal to differ from the transmitted one. During the course of transmission,
the signal undergoes attenuation, phase delay, interference from other transmissions,
Doppler shift in the carrier frequency, and many other effects. In this introductory
discussion we will explain some of the reasons that cause the received signal to be
distorted.



a. Linear Distortion
A signal transmission is said to be distortion-less if the output signal y(t) is an exact
replica of the input signal x(t) , i.e., y(t) has the same shape as the input, except for a
constant amplification (or attenuation) and a constant time delay.

Condition in the time domain for a distortion-less transmission:

|H{f) ]
yit) =k x(t-14)
k
where  k: is a constant amplitude scaling
ta: is a constant time delay
In the frequency domain, the condition fora distortion-
less transmission becomes a(f)

Y(f) =k X(f) e/t

-Eﬂtd




or H(f) =%=kg'ﬂ“f!¢ = Je—i8lf)

That is, for a distortion-less transmission, the transfer function should satisfy two
conditions:

. Hi{H|=k ; where k is a constant amplitude over the frequency range of interest.
. 8(f) = —2nfty = —(2uty)f : linear phase with negative slope that passes
through the origin (or multiples of m).

When |H(f)| is not a constant for all frequencies of interest, amplitude distortion
results.

When 8(f) # —2mft; + 180°, then we have phase distortion (or delay distortion).




b.Non Linear Distortion
When a system contains nonlinear elements , it is not described by a transfer function ,

but by a transfer characteristic of the form

y(t) = a, x(t) +a; x7(t) +as x"(t) + ... (time
domain) y(}{)

In the frequency domain ,

Y(f)=a; X(f) +ay X(H*X(f) +az X(H*X(H*X(D) + ...

Here, the output contains new frequencies not originally
present in the original signal . The nonlinearity
produces undesirable frequency component for [f]< w.

The following examples demonstrate the types of distortion mentioned above.

Example : Amplitude Distortion

Consider the signal x(t) = cos wpt — % cos 3wyt . If this signal passes through a
channel with zero time delay (i.e. , t4= 0) and amplitude spectrum as shown in the

figure
a. Find y(t)
b. Is this a distortion-less transmission 7




H(f)

0.5

2fo 4fo 7 fo 3fo f

Solution :
x(t) consists of two frequency components, f; and 3f; . Upon passing through the
channel, each one of them will be scaled by a different factor.

1 1
a. y(t) = coswyt —=. s cos 3wt

b. Since y(t) # k x(t), this is not a distortion-less transmission .




Example : Phase Distortion
If x(t) in the previous example is passed through a channel whose amplitude spectrum
is a constant k. Each component in x(t) suffers aEH phase shift

a. Find y(t).

b. Is this a distortion-less transmission 7

Solution :

1
x(t) = cosw,t — 3 cos 3w, t

T 1 T
¥(6) =k cos(wot =) = = k cos (3wt —)

T 1 b/}
y(t) = k cosw,(t — Ewﬂ} - 3 k cos (3wﬂ{t - 21'3“?“])

1
y(t) =k cosw,(t —ty) — 3 k cos(3w,(t —tys))

MNote that ty; #tg , Le.,, each component in x(t) suffers from a different
time delay. Hence this transmission introduces phase (delay) distortion.




Harmonic Distortion

Let the input to a nonlinear system be the single tone signal
x(t)=cos2nf,t

This signal is applied to a channel with characteristic
yit)=a, x+agx1+a313

upon substituting x(t) and arranging terms, we get

y(t) = iﬂ.;_ + (ﬂ.l + Eﬂa) cosZafyt + % a, cos 4mfpt + %ugcusﬁzr fot

Note that the output contains a component proportional to x(t) which is (111 +

i—a;) cosZnafyt , in addition to a second and a third harmonic term (terms at twice and

three times the frequency of the input). These new terms are the result of the nonlinear
characteristic and are , therefore, considered harmonic distortion.

Define second harmonic distortion

_ lamplitude of second harmonic |
27 |amplitude of fundamental term]|

1
|§ﬂz |
D, = ~ x 100%




In a similar way we can define the third harmonic distortion as:

B |amplitude of third harmonic |
* 7 |amplitude of fundamental term|

Therefore,
1
| a3 |

- 3
| (ﬂl +7I ﬂa) |
Remark: In the solution above we have made use of the following two identities:

x 100%

CosZx = %{ 1 + cos2x}

En53:|-|:=i {3cosx + cos3x}.




Filters and Filtering

A filter is a frequency selective device . It allows certain frequencies to pass almost
without attenuation wile it suppresses other frequencies

H(f)

. Ideal Filter: k
Ideal low pass filter :

—j2nfty
H(f):[kﬂe ks IfI<B -B B
0. W
h(t) = 2Bk sinc 2B(t — t,)
4h(t)
—2nt,;
ey N

{

=Tt O ot




since h(t) is the response to an impulse applied at t=0 ,and because h(t) has nonzero
values for t<0 , the filter is noncausal (physically non realizable)

Band Pass Filter

H(f) = {k e /2 ta h<lfl<hu

0 0.W

Filer bandwidth B = f, —f;

_ futfi
fe= 2

h(t) = 2Bk sinc B(t — tz) cos w.(t —ty;)

Yy

AT
B B




High pass filter :

_ (ke i?mta |f| > B
H(f) _{ 0 0.w
H
k |
S B U B ff

Band Rejection or Notch Filter

k e J2mfta 0.W

HP =, f<Ifl<f




T

A
“Jr

fE 1:101:1 fg f

Real Filter:
Here we only consider a Butterworth low pass filter. The transfer function of a low
pass Butterworth filter is of the form

H (f) o f
P

B is the 3-dB bandwidth of the filter and P,(jf/B) is a complex polynomial of order n .
The family of Butterworth polynomials is defined by the property

|P, (}f)|2_1+(£ 2n




|H(f)| = —

J1+(£ Zn

The first few polynomials are:
Pi(x)=1+x

P(x) =1 +V2x + x?
Ps(x)=(1+x)(1+x+x%)

A first order LPF :
1
— _Jj2nfe __ 1
H(f) = R+j2::f,; " 1+j2mfRC R
LetB = — —\ °
2ZMRC
1 1 1 ' '
H(f) = - = - = . . .
1+jf/B  Pi(jf/B) Pi(x) C —




A Second order LPF :
1

HU) = 1+ 2L (2nITr)”
1
H —
7 1+ jV2f/B — (f/B)?
where R = %, B = En'iﬁ
1
H(f) =

1+ jvV2f/B - (f/B)?

1
1) = 5.677B)




Hilbert Transform

The guadrature filter : is an all pass filter that shifts the phase of positive

frequency by (-90° ) and negative frequency by ( +90° ). The transfer function of
such a filter is

_—j f}ﬂ
H(ﬂ‘{f f<o

Using the duality property of Fourier transform the impulse response of the filter is



-1
h(t)=—
The Hilbert transform of a signal g(t) is

1 ()
gW=—*g = [ =5 d

Note that the Hilbert transform of a signal is a function of time. The Fourier transform
of g(t) is

G(f) = - sgn() G()

Hilbert transform can be found by using either the time domain approach or the
frequency domain approach depending on the given problem, that is

. . . . . 1
* Direct convolution in the time domain of g(t) and —.

e Find the Fourier transform G(f), then find the inverse Fourier transform

Gty = [7 G(f) 7t gf




Some properties of the Hilbert transform
1. A signal g(t) and its Hilbert transform §(t) have the same energy spectral

density

1GH|” = 1-j sgn(HOIGOI? = |—j sgn(H)I21G(F))2
= G(N)I?

The consequences of this property are:
e [Ifasignal g(t) is bandlimited, then §(t) is bandlimited to the same
bandwidth (note that |G(f)| = |G()])
e G(t) and g(t) have the same total energy (or power).
e g(t) and g(t) have the same autocorrelation function.
2. A signal g(t) and g(t) are orthogonal

I g(® g(H)dt =0



This property can be verified using the general formula of Rayleigh energy
theorem

[Z g gdt = [" GG (Fdf =[G {(—jsgn(f) G}y df
= [” jsgn(f) |G(f)|*df =0

The result above follows from the fact that |G (f)|? is an even function of f
while sgn(f) is an odd function of f. Their product is odd. The integration of an
odd function over a symmetrical interval is zero.

3. If g(t) is a Hilbert transform of g(t) , then the Hilbert transform of §(t) is
—9g(t).

Hilbert Hilbert
g(t) | transform transform -glt)

TPy
- m,
—
T




Example on Hilbert Transform
Find the Hilbert transform of the impulse function g(t) = §(t)

Solution:
Here, we use the convolution in the time domain

g(t)=—x8(t)

As we know, the convolution of the delta function with a continuous function is the
function itself. Therefore,



Example on Hilbert Transform
Find the Hilbert transform of g(t) =

sint
t

Solution :
Here, we will first find the Fourier transform of g(t), find G (f), and then find §(t)




t transform < 1
Arect ;) —_— At sinc ft ; whent= =

t transform 1sinmfr 1sinf
A rect (—) — A — .
1/m n 7mft n f
; ( t ) transform sin f
) —
T rect |7 I 7

So by the duality property, we get the pair

transform sint
T rect ( ) — —
1/m t
18, G(f)=nm rect(J—n) , (See the figure below)
S _ —j1t 0<f<1/2m

io = I, G(f)e"""f‘df

jm ej21tft df _ j'ollm jm eIt gf




G(f)
A
g
-1
& aT =
- Iy
-1
aw
="
W
a(f)
i
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: >
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Correlation and Spectral Density

Here we consider the relationship between the autocorrelation function and the
power spectral density. In this discussion we restrict our attention to real signals.
First, we consider power signals and then energy signals.

Definition: The autocorrelation function of a signal g(t) 1s a measure of similarity
between g(t) and a delayed version of g(t).

a. Autocorrelation function of a power signal

The autocorrelation function of a power signal g(t) is defined as:
Ry(7) = (g(t)g(t — 1)); ((.)) means time average.

Ry (1) = limy_c % [ g®g(t —dt



Exercise: Show that for a periodic signal with period T, the above definition
becomes

Ry(®) = 1 [,° 9(®)g(t — Dt

Exercise: Show that if g(t) is periodic with period T, then R, (7) is also periodic
with the same period T,.

Hint: Expand g(t) in a complex Fourier series g(t) = Y%__, C,e/™°*. Form
the delayed signal g(t — 1), and then perform the integration over a complete
period T;,. You should get the following result:

Rg (1) = 2n=—oo Dnejnmur



This formula bears two results

a. R,(7) is periodic with period Tj.
b. The Complex Fourier coefficients D,, of R;(7) are related to the complex
Fourier coefficients C,, of g(t) by the relation D,, = |C,|*.

Properties of R(1)

e R,(0) = TlufﬂTﬂ g(t)?dt; is the total average signal power.

e R,(7) is an even function of 7, i.e., R;(7) = Ry(—71).

e R,(7) has a maximum ( positive ) magnitude at t =0, i.e. |R,;(7)| < R,;(0).

e If g(t) is periodic with period T, , then R, (7) is also periodic with the same
period T.

e The autocorrelation function of a periodic signal and its power spectral
density ( represented by a discrete set of impulse functions) are Fourier
transform pairs

Sq(f) = F{Ry(D)}
Sg(f) = Zi=—wlCal*8(f — nf)




Cross Correlation Function

The cross correlation function of two periodic signals g, (t) and g, (t) with
period T, 1s defined as;

Ry ,(7) = %f:ﬂ 91() g, (t —1)dt

b- Autocorrelation function of an energy signal

When g(t) is an energy signal, R;(7) is defined as:

R,(¥) = [ g(O)g(t—1)dt



Properties of R(1)

e R,(0)=["_ g(t)%dt; is the total signal energy.
 R,(7) is an even function of 7, i.e., Ry (1) = Ry(—7).
e R,(7) has a maximum ( positive ) magnitude at t=0, i.e. |[R,(7)| < R,(0).

e The autocorrelation function of an energy signal and its energy spectral
density ( a continuous function of frequency) are Fourier transform pairs,
1.e.,

Sg(f) = F{Rg (T)}
Sg(f) =" Ry(x)e /2™y

R,(x) = [ S,(fe/*™df,




Proof:
The autocorrelation function is defined as:

Ry = [,9(Dg(A—1)d2

In this integral we have replaced t by A. With this substitution, we can
rewrite the integral as

Ry(@ = [ gD g(—(z = ))d 2
One can realize that R (7) is nothing but the convolution of g(7) and
—g(7). That is,

Ry(7) = g(7) * g(—7)
Taking the Fourier transform of both sides, we get

F{Rg(T)} = G(f)G*(f)

Therefore, S;(f) = F{Rg(‘t)}= 1G ()2




Cross Correlation Function

The cross correlation function of two energy signals g, (t) and g,(t) is
defined as;

Ri2(0) = [ . 91()ga(t — 7)dt

Example:

Find the auto-correlation function of the sine signal g(t) = Acos(2nfyt + 6),
where A and 6 are constants.



Solution:

As we know, this is a periodic signal. So, we find R, (7) using the definition
1 (T,
Ry(D) = - J," 9(0)g(t — )dt

Ry(7) = %f;“ Acos(2nfyt + 0)Acos(2nfyt — 2mfyT + 0)dt

R,(1) = g jﬂT“[cus(-*-}irfnt — 2nfyT + 260) + cos(2nf,1)]dt
AZ

Ry(7) = T [0 + cos(2mfyT)T,]

Ry(7) = A;cus(Zanr)



Example:
Determine the autocorrelation function of the sinc pulse g(t) = Asinc2Wt.
Solution:

Using the duality property of the Fourier transform, you can deduce that
_ A J
G(f) = " rect(zw)
The energy spectral density of g(t) is
A f
o) = 16N> = (o)?rect(L)
Taking the inverse Fourier transform, we get the autocorrelation function

A% .
R,(7) = ﬁﬂncZWt




Exercise:

a. Find and plot the cross correlation function of the two signals

1 0st.<2
0, otherwise

g:1(t) = {

(10<t<1
gz(t)‘{—1 1<t<?2

b. Are g,(t) and g,(t) orthogonal?

Exercise:

Find and plot the autocorrelation function for the periodic saw-tooth signal shown
below:



g(t)




Example:

Find the autocorrelation function of the rectangular pulse g(t).

g(t)

Solution:

0

1

As we saw earlier, this pulse is an energy signal and , therefore, we can find its

Ry(7) as:

Ry(7) = [ (A)(A)dt=A*(1-1) ; 0<t<I

Using the even symmetry property of the autocorrelation function, we can find

R, (7) for — ve values of 1 as:

R,(t) ==A’(1+1) ; -1<1<0




This function is sketched below. Note that that the maximum value occurs at t=0
and that g(t) and g(t-t) become decorrelated for T = 1 sec, which is the duration of
the pulse.

The energy spectral density is So(f) =F {R(1)}= A’sinc’f

¢ &
Ry

g(t-1)

A(1+7) A(1-1)

T 1+t




Bandwidth of Signals and Systems: t e

Def: A signal g(t) is said to be (absolutely) band-limited to BHz if / \
>

G(f) =0 for |f] >B ® °
Def: A signal x(t) 1s said to be (absolutely) time-limited 1f A X(t)

x(t) = 0 for [t| >T / \
Theorem: An absolutely band-limited waveform cannot be T T >

absolutely time-limited (theoretically has an infinite time duration) and vice versa.

We have earlier examples that support this theorem. For example, the delta
function, which has an almost zero time duration, has a Fourier transform which
extends uniformly over all frequencies. Also, a constant value in the time domain
has a Fourier transform, which 1s an impulse in the frequency domain. This is
repeated here for convenience.




L6(0) F{6(t)}
+«—> 1
< > < >
t f
Fy
A AS(f) I
-+ > < -

0 t 0 f

In general, there is an inverse relationship between the signal bandwidth and the
time duration. The bandwidth and the time duration are related through a relation
of the form, called the time bandwidth product

Bandwidth *Time Duration > constant




The value of the constant depends on the way the bandwidth and the time duration

of a signal are defined as will be 1llustrated later (Possible values of the constant =
1 1

2 )
Remarks:

1. The bandwidth of a signal provides a measure of the extent of significant
frequency content of the signal.

2. The bandwidth of a signal is taken to be the width of a positive frequency
band.

3. For baseband signals or networks , where the spectrum extends from —B to
B, the bandwidth is taken to be B Hz.

4. For bandpass signals or systems where the spectrum extends between (f;, 1>)
and (-f,, -f;), the B.W=1, —f{,.



Some Definitions of Bandwidth:

1- Absolute bandwidth
Here, the Fourier transform of a signal is non zero only within a certain
frequency band. If G(f) = 0 for |f]| >B , then g(t) is absolutely band-limited to
BHz. When G(f) # 0 for f ;< |f|< {;, , then the absolute bandwidth is f, - f .

HEdG)
2- 3-dB (half power points) bandwidth GM\ Lo
The range of frequencies from 0 to some frequency B | : =
at which |G(f)| drops to % of its maximum < 0 B ?
value (for a low pass signal). G
As for a band pass signal, the B.W = f, —f ___ Gmax
1
A
< >
o f f,

3- The 95 % (energy or power) bandwidth.
Here , the B.W is defined as the band of frequencies where the area under

the energy spectral density (or power spectral density) is at least 95% (or
99%) of the total area .




Total Energy = [ |G(f)|? df =2/ |G(f)|2df

[2GHIZAf =095 [Z |G df

4- Equivalent Rectangular Bandwidth.
It 1s the width of a fictitious rectangular spectrum such that the power in that
rectangular band 1s equal to the power associated with the actual spectrum
over positive frequency
Area under rectangle = Area under curve

G(0)[*2Beg = J,, 1G(f)|*df
IG(O)I"**ZB =207 |G(f)|2df

Beg = f |G (f)|*df

IG(D)IE




5- Null — to —null bandwidth:
For baseband signals , B.W is the first null in the envelope of the magnitude

spectrum above zero. G
gt
. : g(t)
i —_—
< 1 >
—1/2 0 /2t
-+ 1 5 >
-1 0 - z  f
T T T
t . sintft
rect(-) — tsincit =1 !
T nft

Zero crossing take place when sinnft =0

mn
nft=nm —» f=-;n=12,.........
T

BW =1 smaller 1 large bandwidth.

T

For a band pass signal, BW=1, —{;




6- Bounded spectrum bandwidth:

Range of frequencies as (0,B) such that outside the band , the power
spectral density must be down by say 50 dB below the maximum value

-50dB =10 log I:}i;:z

7- RMS Bandwidth:

(I fZIG(leldf)
N2 161 df

The corresponding rms duration of g(t) is

( tzlg(t)lzdt)
f lg(t)]|?dt

(here g(t) is assumed to be centered around the origin).

1

411'

Remark: The time bandwidth product is T, Brms =




Time — Bandwidth Product :

To 1llustrate the time — bandwidth product, consider the equivalent rectangular
bandwidth defined earlier as

_ I l6(n1Pdf
2160017

Analogous to this definition, we define an equivalent rectangular time duration as :

00 2
_ U lg@lar)
% 1912t

The time bandwidth product 1s

j=s (='s) 2
B T — [ 1GUNIPAE (J_, 1g(®)ldt)
el 21G(0)|2 " [T |g(D)]2dt

Note _f_i lg(t)|*dt= f_z |G(f)|?df ; Rayleigh energy theorem. Note also that
G(0) = f_z g(t)dt. Using these relations, we get




o0 2
_ 1 (g lg(®)lde)
Beale =3 | [0, g(t)dt|2

Case 1:
When g(t) 1s positive for all time t, then |g(t)| = g(t) and B, T, becomes
1
BeqTeq = E
Case 2 :

For a general g(t) that can take on positive as well as negative values, BeqTeq
satisfies the inequality

BegTeq > —
Note : For B, and T, , the time — bandwidth satisfies the inequality

Bins Trms =

1
41




Example : Bandwidth of a trapezoidal signal

Find the equivalent rectangular bandwidth, B, , for the trapezoidal pulse shown.

Solution :
0o t

(U2 19®)1dD’ L
% 1g@®)Fdt

[Xlg®ldt = A(ty +tp)

[5lg@®Pdt === (2tq +ty) :

»o_ 3 (ta+tp)?
“ 202t +t)




05 2tg+ty
Teq 3(tg+tp)?

Beg

Remark: Note that using this method we were able to determine the signal
bandwidth without the need to go through the Fourier transtform.

Exercise: Use the above method to find the equivalent rectangular bandwidth for
the triangular signal g(t) = tri(>).
Example: Bandwidth of a periodic signal:

Find the bandwidth For the periodic square function detfine over one period as



Solution:

The average power, computed using the time average, is

Ty
1 2
Py = T_nflg(t)l dt
0

1 54?1t 542
= T_ﬂ[4A2T + AZT] = 7 = T = 25A2

Also, by using the Parseval’s theorem, the average power can be computed as:

Pav = 1GoI* + 2 ) G,

n=1

We recall that the Fourier coefficients for this signal were found in Chapter 1.
Using these values we get

Co

o = (3) +2 3 o

n=1




Az © (3)2
_ 2
P = 247 ) oo

n=1

Letustake n=1

9
P, = A® {0.25 +2. ;} = 2.073A2

PL_ 20734% 059
P, 2542 777
(This is the percentage of the total power that lies in the dc and the fundamental
frequency ).
Forn =3
3% 3%
Py = 42{025+2 (5+ )} =227642
Py _ 2276A% _ 91.05%

Pay 2.5A%

(Fraction of power in the dc, fundamental and third harmonic terms)

Forn =5
3\ 2 3\2 3\2

P. = A% {0.25+ 2 (—) +(—) +(—) = 2.349A2
T 31 S5

Ps  23494% 93.97%

P, 254z 707

Here , the 93% power band width is 5f .




Example: Bandwidth of an energy signal .
If the signal g(t) = Ae™*" u(t) is passed through an ideal LPF with B.W = B Hz,

find the fraction of the signal energy contained in B.

Solution

The Fourier transform of g(t) is:

G(f) = —

<+j2mf

The energy in g(t), using the time domain, is

<o oo AZ
E, = ]Ig(t)lz dt = fAZe 2ok dt = 5
0 0

Energy contained in the filter output y(t) is

B B
AZ
&= [l60rar = | G
-B ~A
2A2 _q 2nB
= t Toc
y 2T

The ratio of E,, to the total energy is

E, 2 2nB
e A PO Wi
E, (e

The table below shows this ratio for various values of B .




B (E,/E;) x 100
x 63.9
4
x 80.38
2
e 89.95
2 04.94

Thus, the 95% energy bandwidth is 2 .

Exercise: Find the 98% energy bandwidth.




Pulse Response and Risetime

A rectangular pulse contains significant high frequency components. When that pulse is
passed through a LPF, the high frequency components will be attenuated resulting in
signal distortion.

We need to investigate the relationship that should exist between the pulse bandwidth
and the channel bandwidth. This subject is of particular importance, especially, when we
study the transmission of data over band-limited channels. In the simplest form, a binary
digit 1 may be represented by a pulse A, 0 <t < T, , while binary digit 0 may be
represented by the negative pulse —A4, 0 <t < T,. So, in order to retrieve the
transmitted data, the channel bandwidth must be wide enough to accommodate the
transmitted data.

To convey this idea in a simple form, we first consider the response of a first order low
pass filter to a unit step function and then to a pulse.




Step response of a first order LPF (channel)

Let x(t) = u(t) be applied to a first order RC circuit. This first order filter is a fair
representation of a low pass communication channel.

R
ST AAN, . o
x(t) el g(t)
The system D.E is:
x(t) = Ri + g(t) = Re 222 + g(1)

where g(t) is the channel output.

Rc % + g(t) =u(t)

The solution to this first order system is

g(t) = (1-e~/E) u(t)

The 3-db B.W of the channel 1s




1 .
=5 (to be derived shortly)

g(t) = (1-e™*™) u(t)

Define the difference between the input and the output as:

e(t) = u(t) - g(t) = 27"

Note that e(t) decreases as B increases. Meaning that as the channel bandwidth increases,
the output becomes closer and closer to the input. In the ideal case, when the channel
bandwidth becomes infinity, the output becomes a step function. In essence, to reproduce
a step function (or a rectangular pulse), a channel with infinite bandwidth is needed.



01=1- ‘,-Z‘I".'Ett

gt
ult) 09=1-g %1
1 ——
09 |7 =
01 o elt)=uit)-g({
|
t, t2 t

The Risetime

The Rise time is a measure of the speed of a step response. One common measure is the
10-90 % rise time defined as the time it takes for the output to rise between 10% to 90%
of the final (steady state ) value (1) when a step function is applied to a LIT system. For
the step response g(t) and the first order RC circuit considered above, the rise time can be
easily calculated as:

3 035
tt=tH-1 = 'y

From this result we conclude that: increasing the bandwidth of the channel will decrease
the rise time (a faster response).
0.35

Exercise: For the system above, verify that the rise time is given as t, = ——




Exercise: Find the 10-90% rise time for a second order low pass filter with 3-dB
bandwidth B and transfer function

H(f) =—
p,dL
Where P,(x) = 1+ v2x + x2.

(Hints: You may let B=10, for example, use matlab to find the step response, and then
find the rise time).

Pulse response

It is the response of the circuit to a pulse of duration t. For the same circuit let us apply
the pulse

x(t) = u(t) - u(t- 1)

Using the linearity and time invariance properties, the output can be obtained from the
step response as:




0 t<0
y(t)= l—E_t'{RC 0<t<

T t—1
(1—e H’C).E RC t>1

This is sketched in the figure below.

yit

Bandwidth considerations:
The transfer function of the RC circuit 1s

_ 1/j2mfc 1
H(f) = R+1/j2nfc  1+j2mfRc




1

H(®)| =

J1+(2nfRc)?
1 . 1
Let B= sy 3-db bandwidth ; 2nfRc =1 ;f= —
1
Then, H(f) = T+ /B
1

H()| = J@

For the rectangular pulse x(t), we have

X(f) = sincft

The first null frequency of X(f) is an estimate of the bandwidth B, of x(t), which is of the

1

order of = -

1. When tis large, such that signal bandwidth B, = =<<B (channel B.W)



Y(f) =X(F)H(f) = X(f)
and the output resembles the input . There is enough time for x(t) to reach the
maximum value .

2. When 1 is small, such that signal B, = % >>B (channel B.W)

Y(f) = X(F)H(f) = H(f)

The signal suffers a considerable amount of distortion and Y (f) is no longer
proportional to X(f).




Band pass Signals and Systems

A signal g(t) is called a band pass signal if its Fourier transform G(f) is non-negligible
only in a band of frequencies of total extent 2W centered about f. .

A signal is called narrowband if 2W is small compared with f..
A band pass signal g(t) represented in the form:
g(t) = gi(t) cos w.t - go(t) sinw.t.
gi(t) is a low pass signal of B.W =W Hz called the in phase component of g(t) .
go(t) is a low pass signal of B.W = W Hz called the quadrature component .

g(t) 1s a modulated signal in which gi(t) and gq(t) are the low pass signals. Recall the
modulation property of the Fourier transform :




X(t) cos et — = (X(f- f)+ X(£+ £))
x(t) sin @t —*ﬁ (X(f- fc)- X(f+ fe))
Define the complex envelope of a signal g(t) as:
g® = g(t)+J golt)
g (t) is a low pass signal of B.W =W. The signals g(t) and g (t) are related by :
g(t) =Re{g (1) e/ }

How to get g;(t) and go(t) from g(t):
If we multiply g(t) by cos wct, we get

g(t) coswet = gi(t) cos” w,t - go(t) sin w.t cos w.t
1 1 1 .
=3 gi(t) + Py gi(t) cos 2wet- > go(t) sin 2wt .

The first term is the desired low pass signal. The second and third terms are high
frequency components centered about 2 f...

gi(t) =low pass{2g(t) cosw.t}
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Or, in the frequency domain

Gl(f):{Gﬁ(f-fE)+G(f+fc) —wﬂfi:w}

otherwise

Now if we multiply g(t) by sinw.t, we get

g(t) sinw t= gy(t) sin wct cos wct - go(t) sin” wet

1 1 . 1
=-- go(t) + > gi(t) sin 2w t+ qu{t] cos 2w t




Again, the first term is a low pass signal, while the second and third are high frequency
terms centered about 2 f,.

Z2o(t) = - low pass{2g(t) sinw.t}

240 LPF [ -1/2 g
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In the frequency domain, this is equivalent to

Golty= {j[f;(f — fe) = G(f + fo) —w<f< w}

otherwise



Band pass systems: \

The analysis of band pass systems can be simplified by using the complex envelope
concept. Here, results and techniques from low pass systems can be easily applied to
band pass systems .

The problem to be addressed is :

The input x(t) is a band pass signal
X(t)=xy(t)cosw,t - Xqo(t)sinw,t

x(t) 1s applied to a band pass filter represented as:
h(t) = hy(t)cosw.t - ho(t)sinw,t

The objective is to find the filter output y(t). The output is of course, the convolution of
x(t) and h(t) (y(t) = x(t)*h(t)) which can also be expressed as:

y(t)=yi(t)cosw,t - yo(t)sinw,t

But due to the band-pass nature of the problem, carrying out the direct convolution will
be a tedious task. The complex envelope concept simplifies the problem to a very great
extent. The procedure is summarized as follows:




a. PForm the complex envelope for both the mnput and the channel:
X(H=xi(t) + jxq(t)

h(t)= hy(t) + jho(t)

b. Carry out the convolution between %(t) and h(t). Note that both signals are low
pass signals and so J(t) is also low pass.

2 J(t)= h(t) * X(t)

y(t) = yi(t) + Jyo(t)
¢. The band-pass filter output is obtained from the low pass signal y(t) through the
relation

y(t) =Re{j(t) e)"<"}

or the relation

y(t)=yi(t)coswct - yo(t)sinw,t




Example :

The rectangular radio frequency (RF) pulse




_(Acos2uf.t 0<t<T
x() {D otherwise }

1s applied to a linear filter with impulse response (We will see later that this is a filter
matched to x(t), called the matched filter).

h(t) =x(T - t)
Assume that T=nT¢; n is an integer, T, = ﬁ Determine the response of the filter and
sketch it.
Selution: We follow the three steps outlined above.
h(t)=A cos2nf.(T —t)
=A cos2nf.T cos2nf.t + Asin2nf.Tsin2nf_t

=A cos2m (nT_Tc) cos2mf.t + A sin2n (nT—TE) sin2mf.t
| ‘ | -

cos2nm=1 sin2nm=(0

Acos2nf.t 0<t<T

Therefore, h(t) = {0 otherwise




The complex envelopes of x(t) and h(t) are (step a)

~ A 0<t<T
x{t)={0 n.w}
~ A 0<t<T
h(t)={ﬂ n.w}
X(t) h (t)
A A
-TD Y i ¢t 0 T

§(t) = ®(t) * h(t) is the triangular signal shown in the Figure (step b).



x* h
44t
0 T 2T
| A%t 0<t<T
YO ax21 - ) T<t<2T

The bandpass signal is obtained as (step c)

(A’ )
—t cosw, t 0<t<T
_) 2
}F(t)_" A2 4
5 (2T —=t)cosw,t T <t<2T

and 1s sketched as in the figure below.




Exercise

t
The band-pass signal x(t) = e 7 cos(2mf.t) u(t) is applied to a band-pass filter with
impulse response h(t) given as:

_ (Acos2nf.t 0£t<sT
h(B)= {0 otherwise}

Find and sketch the filter output.



